Liszt

Image credit:

One of the coolest romantic composers**

Examples

Code

{{< math >}}
$$
\gamma_{n} = \frac{ \left | \left (\mathbf x_{n} - \mathbf x_{n-1} \right )^T \left [\nabla F (\mathbf x_{n}) - \nabla F (\mathbf x_{n-1}) \right ] \right |}{\left \|\nabla F(\mathbf{x}_{n}) - \nabla F(\mathbf{x}_{n-1}) \right \|^2}
$$
{{< /math >}}

renders as

$$\gamma_{n} = \frac{ \left | \left (\mathbf x_{n} - \mathbf x_{n-1} \right )^T \left [\nabla F (\mathbf x_{n}) - \nabla F (\mathbf x_{n-1}) \right ] \right |}{\left \|\nabla F(\mathbf{x}_{n}) - \nabla F(\mathbf{x}_{n-1}) \right \|^2}$$

Example inline math {{< math >}}$\nabla F(\mathbf{x}_{n})${{< /math >}} renders as $\nabla F(\mathbf{x}_{n})$.

Example multi-line math using the math linebreak (\\):

{{< math >}}
$$f(k;p_{0}^{*}) = \begin{cases}p_{0}^{*} & \text{if }k=1, \\
1-p_{0}^{*} & \text{if }k=0.\end{cases}$$
{{< /math >}}

renders as

$$ f(k;p_{0}^{*}) = \begin{cases}p_{0}^{*} & \text{if }k=1, \\ 1-p_{0}^{*} & \text{if }k=0.\end{cases} $$

Diagrams

Tayte Choudhury
Tayte Choudhury
High School Student